# Convergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes

#### Franco Brezzi

University of Pavia, Italy brezzi@imati.cnr.it

### Konstantin Lipnikov Mikhail Shashkov

Los Alamos National Laboratory, USA lipnikov@lanl.gov, shashkov@lanl.gov



## Acknowledgments

- FIRB 2001 and PRIN 2003 projects of Italian MIUR.
- DOE/ASCR program in Applied Mathematical Sciences.
- Advance Simulation and Computing (ASC) program.



### **Contents**

- Motivation
- Mimetic finite difference method
- Theoretical assumptions
- Main results
- Possible extensions
- Conclusion



## **Motivation**

- Sources of polyhedral meshes:
  - meshing of complex geometries
  - adaptive mesh refinement methods
  - multi-block meshes (non-matching, hybrid)
  - mesh reconnection methods
  - moving mesh methods



### **Motivation**

"... The tests carried out so far indicate that our polyhedral meshes lead to superior convergence rates and accuracy relative to tetrahedral meshes and comparable to those of high-quality hexahedral meshes (where both can be generated)."

[CD adapco Group]



$$|\vec{F}| = -K \operatorname{grad} p, \quad \operatorname{div} \vec{F} = b, \qquad \operatorname{div} = -(K \operatorname{grad})^*, \quad \operatorname{Null}(\operatorname{grad}) = \operatorname{const} \vec{F}$$



$$\mathbf{F}^h = -\mathbf{\mathcal{G}} \, \mathbf{p}^h, \quad \mathbf{\mathcal{DIV}} \mathbf{F}^h = \mathbf{b}^h, \qquad \mathbf{\mathcal{DIV}} = -\mathbf{\mathcal{G}}^*, \quad \mathrm{Null}(\mathbf{\mathcal{G}}) = const$$



$$|\vec{F}| = -K \operatorname{grad} p, \quad \operatorname{div} \vec{F} = b, \qquad \operatorname{div} = -(K \operatorname{grad})^*, \quad \operatorname{Null}(\operatorname{grad}) = \operatorname{const} \vec{F}$$

#### Four-step methodology:

- 1. Define degrees of freedom for  $p^h \in Q_h$  and  $F^h \in X_h$
- 2. Discretize the mass balance equation,  $\mathcal{DIV}: X_h \to Q_h$
- 3. Equip discrete spaces with scalar products  $[\cdot, \cdot]_Q$  and  $[\cdot, \cdot]_X$
- 4. Derive the discrete flux operator,  $\mathcal{G}: Q_h \to X_h$ , from Green's formula

$$oxed{oldsymbol{F}^h = -oldsymbol{\mathcal{G}} \, oldsymbol{p}^h, \quad oldsymbol{\mathcal{DIV}} oldsymbol{F}^h = oldsymbol{b}^h, \quad oldsymbol{\mathcal{DIV}} = -oldsymbol{\mathcal{G}}^*, \quad ext{Null}(oldsymbol{\mathcal{G}}) = const$$



Step 1. Define degrees of freedom for  $p^h \in Q_h$  and  $F^h \in X_h$ 



- $ightharpoonup p^h$  is constant on each polyhedron,  $\dim(Q_h) = \#elements$ 
  - $(\boldsymbol{p}^h)_E$  is the degree of freedom associated with element E
  - define the interpolated function  ${m p}^I\in Q_h$  as follows:  $({m p}^I)_E=rac{1}{|E|}\int_E p(x)\,\mathrm{d}x$



### Step 1. Define degrees of freedom for $p^h \in Q_h$ and $\boldsymbol{F}^h \in X_h$



- **F** is constant on each face,  $\dim(X_h) = \#faces$ 
  - $(\mathbf{F}^h)_f$  is the normal velocity component associated with face f
  - define the interpolated function  $\mathbf{F}^I \in X_h$  as follows:  $(\mathbf{F}^I)_f = \frac{1}{|f|} \int_f \vec{F} \cdot \vec{n} \, \mathrm{d}x$



### Steps 2. Discretize the mass balance equation, $\mathcal{DIV}: X_h \to Q_h$

Gauss' theorem:

$$\operatorname{div} \vec{F} = \lim_{|E| \to 0} \frac{1}{|E|} \oint_{\partial E} \vec{F} \cdot \vec{n} \, dx$$



The definition of  $F^h$  gives

$$\left(\mathcal{DIV} \mathbf{F}^h\right)_E = \frac{1}{|E|} \sum_{f \in \partial E} (\mathbf{F}^h)_f |f|$$



Step 3. Equip discrete spaces with scalar products  $[\cdot,\cdot]_Q$  and  $[\cdot,\cdot]_X$ 

$$lacksquare [oldsymbol{F}^h, oldsymbol{G}^h]_X = \sum_{E \in \Omega_h} [oldsymbol{F}^h, oldsymbol{G}^h]_E$$

where

$$[oldsymbol{F}^h,\,oldsymbol{G}^h]_E = \sum_{i,j=1}^{k_E} oldsymbol{M}_{E,i,j}\,(oldsymbol{F}^h)_{f_i}\,(oldsymbol{G}^h)_{f_j}$$

and  $M_E$  is an SPD matrix.



Steps 4. Derive the discrete flux operator,  $\mathcal{G}: Q_h \to X_h$ , from Green's formula

 $\blacksquare$  The continuous operators div and  $(K \operatorname{grad})$  satisfy

$$\int_{\Omega} \vec{F} \cdot K^{-1}(K \operatorname{grad} p) dx = -\int_{\Omega} p \operatorname{div} \vec{F} dx.$$

• We enforce that the discrete operators  $\mathcal{DIV}$  and  $\mathcal{G}$  satisfy

$$[\boldsymbol{F}^h, \boldsymbol{\mathcal{G}}\, \boldsymbol{p}^h]_X = -[\boldsymbol{p}^h, \, \mathcal{DIV}\, \boldsymbol{F}^h]_Q \qquad orall \boldsymbol{p}^h \in Q_h \quad orall \boldsymbol{F}^h \in X_h.$$



$$|\vec{F}| = -K \operatorname{grad} p, \quad \operatorname{div} \vec{F} = b, \qquad \operatorname{div} = -(K \operatorname{grad})^*, \quad \operatorname{Null}(\operatorname{grad}) = \operatorname{const} \vec{F}$$

#### Four-step methodology:

- 1. Define degrees of freedom for  $p^h \in Q_h$  and  $F^h \in X_h$
- 2. Discretize the mass balance equation,  $\mathcal{DIV}: X_h \to Q_h$
- 3. Equip discrete spaces with scalar products  $[\cdot, \cdot]_Q$  and  $[\cdot, \cdot]_X$
- 4. Derive the discrete flux operator,  $\mathcal{G}: Q_h \to X_h$ , from Green's formula

$$oxed{oldsymbol{F}^h = -oldsymbol{\mathcal{G}} \, oldsymbol{p}^h, \quad oldsymbol{\mathcal{DIV}} oldsymbol{F}^h = oldsymbol{b}^h, \quad oldsymbol{\mathcal{DIV}} = -oldsymbol{\mathcal{G}}^*, \quad ext{Null}(oldsymbol{\mathcal{G}}) = const$$



## **Problem assumptions**

 $\blacksquare$  Regularity and ellipticity of K.

Every component of K is in  $W^1_{\infty}(\Omega)$  and K is strongly elliptic:

$$|\kappa_*||\mathbf{v}||^2 \le \mathbf{v}^T K(\mathbf{x}) \mathbf{v} \le \kappa^* ||\mathbf{v}||^2$$

for all  $\mathbf{v} \in \mathbb{R}^3$  and  $\mathbf{x} \in \Omega$ .

 $\blacksquare$  Assumptions on the domain  $\Omega$ .

 $\Omega$  is a polyhedron with a Lipschitz continuous boundary.



Number of faces and edges.

Every element E has at most  $N_f$  faces, and each face f has at most  $N_e$  edges.

Volumes, areas, and lengths.

 $\exists$  three positive constants  $v_*$ ,  $a_*$  and  $\ell_*$  such that

$$v_* h_E^3 \le |E|, \quad a_* h_E^2 \le |f|, \quad \ell_* h_E \le |e|$$

where  $h_E$  is the diameter of E.



- Star-shaped faces.
  - Mesh faces are flat.
  - $\exists$  a positive constant  $\gamma_*$  s.t. each face f of element E is star-shaped w.r.t. every point of the disk  $D_f$  of radius  $\gamma_*h_E$ .



The pyramid property.

For every face f of element E,  $\exists$  a pyramid  $P_E^f$  s.t.

- $\blacksquare P_E^f$  is contained in E
- $\blacksquare$  its base is equal to f
- its height is equal to  $\gamma_* h_E$
- lacksquare its vertex is projected to the center of disk  $D_f$





Star-shaped elements.

 $\exists$  a positive number  $\tau_*$  s.t. every element E is star-shaped w.r.t. every point of a sphere of radius  $\tau_* h_E$ .



### The assumptions forbid:

- anisotropic (stretched) elements
- stretched faces
- small 2D angles

### The assumptions allow:

- regular meshes
- degenerate elements
- non-convex elements





• Stability of  $[\cdot, \cdot]_E$ .

 $\exists$  two positive constants  $s_*$  and  $S^*$  s.t., for every  $G^h \in X_h$  and for every element E, one has

$$s_* |E| \sum_{f \in \partial E} (\mathbf{G}^h)_f^2 \le [\mathbf{G}^h, \mathbf{G}^h]_E \le S^* |E| \sum_{f \in \partial E} (\mathbf{G}^h)_f^2.$$



• Stability of  $[\cdot, \cdot]_E$ .

 $\exists$  two positive constants  $s_*$  and  $S^*$  s.t., for every  $G^h \in X_h$  and for every element E, one has

$$s_* |E| \sum_{f \in \partial E} (\boldsymbol{G}^h)_f^2 \leq [\boldsymbol{G}^h, \boldsymbol{G}^h]_E \leq S^* |E| \sum_{f \in \partial E} (\boldsymbol{G}^h)_f^2.$$

convergence proofs based on relationships with MFE methods and Strang's first lemma can NOT be used.



• Consistency of  $[\cdot, \cdot]_E$ .

For every element E, every linear function  $q^1$  and every  $G^h \in X_h$ , we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x - \int_E q^1 (\mathbf{D} \mathcal{I} \mathcal{V} \mathbf{G}^h)_E \, \mathrm{d}x$$



• Consistency of  $[\cdot, \cdot]_E$ .

For every element E, every linear function  $q^1$  and every  $\mathbf{G}^h \in X_h$ , we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x - \int_E q^1 (\mathbf{D} \mathcal{I} \mathcal{V} \mathbf{G}^h)_E \, \mathrm{d}x$$

for divergence-free functions, we get

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h dx.$$



• Consistency of  $[\cdot, \cdot]_E$ .

For every element E, every linear function  $q^1$  and every  $\mathbf{G}^h \in X_h$ , we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x - \int_E q^1 (\mathbf{D} \mathcal{I} \mathcal{V} \mathbf{G}^h)_E \, \mathrm{d}x$$

• for  $q^1 = 1$ , we get the definition of  $\mathcal{DIV}$ :

$$\left( \frac{\mathcal{DIV} G^h}{|E|} \right)_E = \frac{1}{|E|} \sum_{f \in \partial E} (G^h)_f |f|$$



• Consistency of  $[\cdot, \cdot]_E$ .

For every element E, every linear function  $q^1$  and every  $\mathbf{G}^h \in X_h$ , we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x - \int_E q^1 (\mathbf{D} \mathcal{I} \mathcal{V} \mathbf{G}^h)_E \, \mathrm{d}x$$

we are left with 3 possible choice for  $q^1$ :

$$q^1 = x, \qquad q^1 = y, \qquad q^1 = z.$$

we get a linear system for the coefficients of  $M_E$  (NO lifting operator)

- stability analysis
- estimate for the vector variable
- 1st estimate for the scalar variable
- link to methods using lifting operators
- 2nd estimate for the scalar variable



Stability analysis.

Define mesh norms:

$$|||m{p}^h|||_Q^2 := [m{p}^h, \, m{p}^h]_Q, \quad |||m{F}^h|||_X^2 := [m{F}^h, \, m{F}^h]_X$$

and

$$|||m{F}^h|||_{div}^2 := |||m{F}^h|||_X^2 + \sum_{E \in \Omega_h} h_E^2 \, ||m{\mathcal{DIV}}m{F}^h||_{L_2(E)}^2.$$



Stability analysis (cont.)

For every  $q^h \in Q_h$ , there exists  $G^h \in X_h$  s.t.

$$[\mathcal{DIV} \mathbf{G}^h, \mathbf{q}^h]_Q \ge \beta_* |||\mathbf{G}^h|||_{div} |||\mathbf{q}^h|||_Q$$

where  $\beta_*$  is a constant independent of  $\mathbf{q}^h$ ,  $\mathbf{G}^h$  and  $\Omega_h$ .



Estimate for the vector variables.

**Theorem**. Let  $(p, \vec{F})$  be the continuous solution,  $(p^h, F^h)$  be the discrete solution and  $F^I$  be the interpolant of  $\vec{F}$ . Then

$$|||\mathbf{F}^I - \mathbf{F}^h|||_X \le C^* h ||p||_{H^2(\Omega)},$$

where

$$h = \max_{E \in \Omega_h} h_E.$$



■ 1st estimate for the scalar variables.

**Theorem**. Let  $(p, \vec{F})$  be the continuous solution,  $(p^h, F^h)$  be the discrete solution and  $p^I$  be the interpolant of p. For *convex* domain  $\Omega$ , we get

$$|||\mathbf{p}^{I} - \mathbf{p}^{h}|||_{Q} \le C^{*} h \left(||p||_{H^{2}(\Omega)} + ||b||_{H^{1}(\Omega)}\right)$$

where b is the source term.



Link to methods using lifting operators.

Consider a lifting operator  $R_E$  with the properties:

- preserves normal components:  $R_E(\mathbf{G}^h) \cdot \vec{n} = (\mathbf{G}^h)_f \quad \forall f \in \partial E$
- preserves constant divergence:  $\operatorname{div}\left(R_E(\boldsymbol{G}^h)\right) = \left(\mathcal{DIV}\,\boldsymbol{G}^h\right)_E$
- exact for constant vectors  $\vec{G}_0$ :  $R_E(G_0^I) = \vec{G}_0$

Then

$$[\boldsymbol{F}^h, \boldsymbol{G}^h]_E := \int_E K^{-1} R_E(\boldsymbol{F}^h) \cdot R_E(\boldsymbol{G}^h) \, \mathrm{d}x$$

satisfies the scalar product assumptions.



2nd estimate for the scalar variables.

Theorem Let  $(p, \vec{F})$  be the continuous solution,  $(p^h, F^h)$  be the discrete solution and  $p^I$  be the interpolant of p. Let  $\Omega$  be *convex* domain and the lifting operator  $R_E$  satisfy

$$||R_E(\mathbf{G}^I) - \vec{G}||_{L_2(E)} \le C_{Ra}^* h_E ||\vec{G}||_{(H^1(E))^3}$$

for all  $\vec{G}$ . Then

$$|||\mathbf{p}^I - \mathbf{p}^h|||_Q \le C^* h^2 (||p||_{H^2(\Omega)} + ||b||_{H^1(\Omega)}).$$



For every linear function  $q^1$  and every  $G^h \in X_h$ , we have

$$[(K \nabla q^1)^I, \mathbf{G}^h]_E = \int_{\partial E} q^1 \mathbf{G}^h \, \mathrm{d}x - \int_E q^1 (\mathbf{D} \mathcal{I} \mathcal{V} \mathbf{G}^h)_E \, \mathrm{d}x.$$

It results in 3 sets of equations with unknown matrix  $M_E$ :

$$M_E a_i = c_i, \qquad i = 1, 2, 3,$$

where

$$\boldsymbol{a}_1 = (K \nabla x)^I, \quad \boldsymbol{a}_2 = (K \nabla y)^I, \quad \boldsymbol{a}_3 = (K \nabla z)^I.$$



matrix  $M_E$  has k(k+1)/2 unknown entries:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{12} & m_{22} & m_{23} & m_{24} \\ m_{13} & m_{23} & m_{33} & m_{34} \\ m_{14} & m_{24} & m_{34} & m_{44} \end{pmatrix}$$
 for  $k = 4$  (tetrahedron)

■ 3 equations,  $M_E a_i = c_i$ , give a linear system

$$A \mathbf{m} = C$$

- $\blacksquare$  it has at most 3k-3 linear independent equations
- it is always compatible
- the solution vector m is not unique



■ We search for a solution maximizing 2-norm of diagonal elements:

$$\mathbf{m} = \arg\max_{m} \sum_{i=1}^{k} m_{ii}^{2}$$

and minimizing 2-norm of off-diagonal elements.

■ The it trick is to modify the original equations:

$$N_E \boldsymbol{a}_i = (\alpha_E I - M_E) \boldsymbol{a}_i = \alpha_E \boldsymbol{a}_i - \boldsymbol{c}_i$$

and to use the LAPACK routine giving a minimal norm solution.



Let 
$$p(x, y) = x^3 y^2 + x \cos(xy) \sin(x)$$
,  $\alpha_E = 5|E|$  and

$$K(x, y) = \begin{pmatrix} (x+1)^2 + y^2 & -xy \\ -xy & (x+1)^2 \end{pmatrix}.$$



| l    | $    oldsymbol{p}^I-oldsymbol{p}^h   _Q$ | $   \boldsymbol{F}^I - \boldsymbol{F}^h   _X$ |
|------|------------------------------------------|-----------------------------------------------|
| 1    | 7.79e-1                                  | 2.00e-0                                       |
| 2    | 1.38e-1                                  | 9.73e-1                                       |
| 3    | 2.96e-2                                  | 4.01e-1                                       |
| 4    | 7.00e-3                                  | 1.46e-1                                       |
| 5    | 1.72e-3                                  | 5.32e-2                                       |
| rate | 2.19                                     | 1.32                                          |



## Extensions of the methodology

- Straightforward extensions:
  - $\blacksquare h^2$ -curved faces (almost flat faces)
  - problems with a lack of elliptic regularity
- Possible extensions:
  - other PDEs (Maxwell, linear elasticity)
  - essentially curved faces



### **Conclusion**

- We developed a new methodology for the design and the analysis of the MFD method.
- We proved stability of the discretization.
- We proved optimal convergence estimates.
- We analyzed numerically a new algorithm for computing  $M_E$ .

